Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parsimonious HMMs for Offline Handwritten Chinese Text Recognition (1808.04138v1)

Published 13 Aug 2018 in cs.CV

Abstract: Recently, hidden Markov models (HMMs) have achieved promising results for offline handwritten Chinese text recognition. However, due to the large vocabulary of Chinese characters with each modeled by a uniform and fixed number of hidden states, a high demand of memory and computation is required. In this study, to address this issue, we present parsimonious HMMs via the state tying which can fully utilize the similarities among different Chinese characters. Two-step algorithm with the data-driven question-set is adopted to generate the tied-state pool using the likelihood measure. The proposed parsimonious HMMs with both Gaussian mixture models (GMMs) and deep neural networks (DNNs) as the emission distributions not only lead to a compact model but also improve the recognition accuracy via the data sharing for the tied states and the confusion decreasing among state classes. Tested on ICDAR-2013 competition database, in the best configured case, the new parsimonious DNN-HMM can yield a relative character error rate (CER) reduction of 6.2%, 25% reduction of model size and 60% reduction of decoding time over the conventional DNN-HMM. In the compact setting case of average 1-state HMM, our parsimonious DNN-HMM significantly outperforms the conventional DNN-HMM with a relative CER reduction of 35.5%.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.