Semi-supervised Skin Lesion Segmentation via Transformation Consistent Self-ensembling Model (1808.03887v1)
Abstract: Automatic skin lesion segmentation on dermoscopic images is an essential component in computer-aided diagnosis of melanoma. Recently, many fully supervised deep learning based methods have been proposed for automatic skin lesion segmentation. However, these approaches require massive pixel-wise annotation from experienced dermatologists, which is very costly and time-consuming. In this paper, we present a novel semi-supervised method for skin lesion segmentation by leveraging both labeled and unlabeled data. The network is optimized by the weighted combination of a common supervised loss for labeled inputs only and a regularization loss for both labeled and unlabeled data. In this paper, we present a novel semi-supervised method for skin lesion segmentation, where the network is optimized by the weighted combination of a common supervised loss for labeled inputs only and a regularization loss for both labeled and unlabeled data. Our method encourages a consistent prediction for unlabeled images using the outputs of the network-in-training under different regularizations, so that it can utilize the unlabeled data. To utilize the unlabeled data, our method encourages the consistent predictions of the network-in-training for the same input under different regularizations. Aiming for the semi-supervised segmentation problem, we enhance the effect of regularization for pixel-level predictions by introducing a transformation, including rotation and flipping, consistent scheme in our self-ensembling model. With only 300 labeled training samples, our method sets a new record on the benchmark of the International Skin Imaging Collaboration (ISIC) 2017 skin lesion segmentation challenge. Such a result clearly surpasses fully-supervised state-of-the-arts that are trained with 2000 labeled data.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.