Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Several classes of minimal linear codes with few weights from weakly regular plateaued functions (1808.03877v1)

Published 11 Aug 2018 in cs.IT and math.IT

Abstract: Minimal linear codes have significant applications in secret sharing schemes and secure two-party computation. There are several methods to construct linear codes, one of which is based on functions over finite fields. Recently, many construction methods of linear codes based on functions have been proposed in the literature. In this paper, we generalize the recent construction methods given by Tang et al. in [IEEE Transactions on Information Theory, 62(3), 1166-1176, 2016] to weakly regular plateaued functions over finite fields of odd characteristic. We first construct three weight linear codes from weakly regular plateaued functions based on the second generic construction and determine their weight distributions. We next give a subcode with two or three weights of each constructed code as well as its parameter. We finally show that the constructed codes in this paper are minimal, which confirms that the secret sharing schemes based on their dual codes have the nice access structures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sihem Mesnager (69 papers)
  2. Ahmet Sınak (4 papers)
Citations (68)

Summary

We haven't generated a summary for this paper yet.