Papers
Topics
Authors
Recent
2000 character limit reached

Ranking with Features: Algorithm and A Graph Theoretic Analysis

Published 11 Aug 2018 in cs.LG and stat.ML | (1808.03857v2)

Abstract: We consider the problem of ranking a set of items from pairwise comparisons in the presence of features associated with the items. Recent works have established that $O(n\log(n))$ samples are needed to rank well when there is no feature information present. However, this might be sub-optimal in the presence of associated features. We introduce a new probabilistic preference model called feature-Bradley-Terry-Luce (f-BTL) model that generalizes the standard BTL model to incorporate feature information. We present a new least squares based algorithm called fBTL-LS which we show requires much lesser than $O(n\log(n))$ pairs to obtain a good ranking -- precisely our new sample complexity bound is of $O(\alpha\log \alpha)$, where $\alpha$ denotes the number of `independent items' of the set, in general $\alpha << n$. Our analysis is novel and makes use of tools from classical graph matching theory to provide tighter bounds that sheds light on the true complexity of the ranking problem, capturing the item dependencies in terms of their feature representations. This was not possible with earlier matrix completion based tools used for this problem. We also prove an information theoretic lower bound on the required sample complexity for recovering the underlying ranking, which essentially shows the tightness of our proposed algorithms. The efficacy of our proposed algorithms are validated through extensive experimental evaluations on a variety of synthetic and real world datasets.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.