Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Weakly supervised learning of indoor geometry by dual warping (1808.03609v1)

Published 10 Aug 2018 in cs.CV

Abstract: A major element of depth perception and 3D understanding is the ability to predict the 3D layout of a scene and its contained objects for a novel pose. Indoor environments are particularly suitable for novel view prediction, since the set of objects in such environments is relatively restricted. In this work we address the task of 3D prediction especially for indoor scenes by leveraging only weak supervision. In the literature 3D scene prediction is usually solved via a 3D voxel grid. However, such methods are limited to estimating rather coarse 3D voxel grids, since predicting entire voxel spaces has large computational costs. Hence, our method operates in image-space rather than in voxel space, and the task of 3D estimation essentially becomes a depth image completion problem. We propose a novel approach to easily generate training data containing depth maps with realistic occlusions, and subsequently train a network for completing those occluded regions. Using multiple publicly available dataset~\cite{song2017semantic,Silberman:ECCV12} we benchmark our method against existing approaches and are able to obtain superior performance. We further demonstrate the flexibility of our method by presenting results for new view synthesis of RGB-D images.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.