Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Paired 3D Model Generation with Conditional Generative Adversarial Networks (1808.03082v2)

Published 9 Aug 2018 in cs.CV

Abstract: Generative Adversarial Networks (GANs) are shown to be successful at generating new and realistic samples including 3D object models. Conditional GAN, a variant of GANs, allows generating samples in given conditions. However, objects generated for each condition are different and it does not allow generation of the same object in different conditions. In this paper, we first adapt conditional GAN, which is originally designed for 2D image generation, to the problem of generating 3D models in different rotations. We then propose a new approach to guide the network to generate the same 3D sample in different and controllable rotation angles (sample pairs). Unlike previous studies, the proposed method does not require modification of the standard conditional GAN architecture and it can be integrated into the training step of any conditional GAN. Experimental results and visual comparison of 3D models show that the proposed method is successful at generating model pairs in different conditions.

Citations (14)

Summary

We haven't generated a summary for this paper yet.