Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Nonparametric Gaussian Mixture Models for the Multi-Armed Bandit (1808.02932v4)

Published 8 Aug 2018 in stat.ML, cs.LG, and stat.CO

Abstract: We here adopt Bayesian nonparametric mixture models to extend multi-armed bandits in general, and Thompson sampling in particular, to scenarios where there is reward model uncertainty. In the stochastic multi-armed bandit, the reward for the played arm is generated from an unknown distribution. Reward uncertainty, i.e., the lack of knowledge about the reward-generating distribution, induces the exploration-exploitation trade-off: a bandit agent needs to simultaneously learn the properties of the reward distribution and sequentially decide which action to take next. In this work, we extend Thompson sampling to scenarios where there is reward model uncertainty by adopting Bayesian nonparametric Gaussian mixture models for flexible reward density estimation. The proposed Bayesian nonparametric mixture model Thompson sampling sequentially learns the reward model that best approximates the true, yet unknown, per-arm reward distribution, achieving successful regret performance. We derive, based on a novel posterior convergence based analysis, an asymptotic regret bound for the proposed method. In addition, we empirically evaluate its performance in diverse and previously elusive bandit environments, e.g., with rewards not in the exponential family, subject to outliers, and with different per-arm reward distributions. We show that the proposed Bayesian nonparametric Thompson sampling outperforms, both in averaged cumulative regret and in regret volatility, state-of-the-art alternatives. The proposed method is valuable in the presence of bandit reward model uncertainty, as it avoids stringent case-by-case model design choices, yet provides important regret savings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube