Papers
Topics
Authors
Recent
2000 character limit reached

Hard to Solve Instances of the Euclidean Traveling Salesman Problem (1808.02859v3)

Published 8 Aug 2018 in cs.DM, cs.CC, cs.DS, and math.CO

Abstract: The well known $4/3$ conjecture states that the integrality ratio of the subtour LP is at most $4/3$ for metric Traveling Salesman instances. We present a family of Euclidean Traveling Salesman instances for which we prove that the integrality ratio of the subtour LP converges to $4/3$. These instances (using the rounded Euclidean norm) turn out to be hard to solve exactly with Concorde, the fastest existing exact TSP solver. For a 200 vertex instance from our family of Euclidean Traveling Salesman instances Concorde needs several days of CPU time. This is more than 1,000,000 times the runtime for a TSPLIB instance of similar size. Thus our new family of Euclidean Traveling Salesman instances may serve as new benchmark instances for TSP algorithms.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.