Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Tutorial on Network Embeddings (1808.02590v1)

Published 8 Aug 2018 in cs.SI

Abstract: Network embedding methods aim at learning low-dimensional latent representation of nodes in a network. These representations can be used as features for a wide range of tasks on graphs such as classification, clustering, link prediction, and visualization. In this survey, we give an overview of network embeddings by summarizing and categorizing recent advancements in this research field. We first discuss the desirable properties of network embeddings and briefly introduce the history of network embedding algorithms. Then, we discuss network embedding methods under different scenarios, such as supervised versus unsupervised learning, learning embeddings for homogeneous networks versus for heterogeneous networks, etc. We further demonstrate the applications of network embeddings, and conclude the survey with future work in this area.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.