Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Word-Level Loss Extensions for Neural Temporal Relation Classification (1808.02374v1)

Published 7 Aug 2018 in cs.CL

Abstract: Unsupervised pre-trained word embeddings are used effectively for many tasks in natural language processing to leverage unlabeled textual data. Often these embeddings are either used as initializations or as fixed word representations for task-specific classification models. In this work, we extend our classification model's task loss with an unsupervised auxiliary loss on the word-embedding level of the model. This is to ensure that the learned word representations contain both task-specific features, learned from the supervised loss component, and more general features learned from the unsupervised loss component. We evaluate our approach on the task of temporal relation extraction, in particular, narrative containment relation extraction from clinical records, and show that continued training of the embeddings on the unsupervised objective together with the task objective gives better task-specific embeddings, and results in an improvement over the state of the art on the THYME dataset, using only a general-domain part-of-speech tagger as linguistic resource.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.