Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lower bounds for trace reconstruction (1808.02336v2)

Published 4 Aug 2018 in math.PR, cs.CC, cs.IT, math.IT, math.ST, and stat.TH

Abstract: In the trace reconstruction problem, an unknown bit string ${\bf x}\in{0,1 }n$ is sent through a deletion channel where each bit is deleted independently with some probability $q\in(0,1)$, yielding a contracted string $\widetilde{\bf x}$. How many i.i.d.\ samples of $\widetilde{\bf x}$ are needed to reconstruct $\bf x$ with high probability? We prove that there exist ${\bf x},{\bf y} \in{0,1 }n$ such that at least $c\, n{5/4}/\sqrt{\log n}$ traces are required to distinguish between ${\bf x}$ and ${\bf y}$ for some absolute constant $c$, improving the previous lower bound of $c\,n$. Furthermore, our result improves the previously known lower bound for reconstruction of random strings from $c \log2 n$ to $c \log{9/4}n/\sqrt{\log \log n} $.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.