Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Generic Multi-Projection-Center Model and Calibration Method for Light Field Cameras (1808.02244v1)

Published 7 Aug 2018 in cs.CV

Abstract: Light field cameras can capture both spatial and angular information of light rays, enabling 3D reconstruction by a single exposure. The geometry of 3D reconstruction is affected by intrinsic parameters of a light field camera significantly. In the paper, we propose a multi-projection-center (MPC) model with 6 intrinsic parameters to characterize light field cameras based on traditional two-parallel-plane (TPP) representation. The MPC model can generally parameterize light field in different imaging formations, including conventional and focused light field cameras. By the constraints of 4D ray and 3D geometry, a 3D projective transformation is deduced to describe the relationship between geometric structure and the MPC coordinates. Based on the MPC model and projective transformation, we propose a calibration algorithm to verify our light field camera model. Our calibration method includes a close-form solution and a non-linear optimization by minimizing re-projection errors. Experimental results on both simulated and real scene data have verified the performance of our algorithm.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.