Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Variance Reduction Method with Stochastic Batch Size (1808.02169v1)

Published 7 Aug 2018 in cs.LG and stat.ML

Abstract: In this paper we study a family of variance reduction methods with randomized batch size---at each step, the algorithm first randomly chooses the batch size and then selects a batch of samples to conduct a variance-reduced stochastic update. We give the linear convergence rate for this framework for composite functions, and show that the optimal strategy to achieve the optimal convergence rate per data access is to always choose batch size of 1, which is equivalent to the SAGA algorithm. However, due to the presence of cache/disk IO effect in computer architecture, the number of data access cannot reflect the running time because of 1) random memory access is much slower than sequential access, 2) when data is too big to fit into memory, disk seeking takes even longer time. After taking these into account, choosing batch size of $1$ is no longer optimal, so we propose a new algorithm called SAGA++ and show how to calculate the optimal average batch size theoretically. Our algorithm outperforms SAGA and other existing batched and stochastic solvers on real datasets. In addition, we also conduct a precise analysis to compare different update rules for variance reduction methods, showing that SAGA++ converges faster than SVRG in theory.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.