Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distributional Multivariate Policy Evaluation and Exploration with the Bellman GAN (1808.01960v1)

Published 6 Aug 2018 in cs.LG and stat.ML

Abstract: The recently proposed distributional approach to reinforcement learning (DiRL) is centered on learning the distribution of the reward-to-go, often referred to as the value distribution. In this work, we show that the distributional BeLLMan equation, which drives DiRL methods, is equivalent to a generative adversarial network (GAN) model. In this formulation, DiRL can be seen as learning a deep generative model of the value distribution, driven by the discrepancy between the distribution of the current value, and the distribution of the sum of current reward and next value. We use this insight to propose a GAN-based approach to DiRL, which leverages the strengths of GANs in learning distributions of high-dimensional data. In particular, we show that our GAN approach can be used for DiRL with multivariate rewards, an important setting which cannot be tackled with prior methods. The multivariate setting also allows us to unify learning the distribution of values and state transitions, and we exploit this idea to devise a novel exploration method that is driven by the discrepancy in estimating both values and states.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.