Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

ATMPA: Attacking Machine Learning-based Malware Visualization Detection Methods via Adversarial Examples (1808.01546v3)

Published 5 Aug 2018 in cs.CR

Abstract: Since the threat of malicious software (malware) has become increasingly serious, automatic malware detection techniques have received increasing attention, where ML-based visualization detection methods become more and more popular. In this paper, we demonstrate that the state-of-the-art ML-based visualization detection methods are vulnerable to Adversarial Example (AE) attacks. We develop a novel Adversarial Texture Malware Perturbation Attack (ATMPA) method based on the gradient descent and L-norm optimization method, where attackers can introduce some tiny perturbations on the transformed dataset such that ML-based malware detection methods will completely fail. The experimental results on the MS BIG malware dataset show that a small interference can reduce the accuracy rate down to 0% for several ML-based detection methods, and the rate of transferability is 74.1% on average.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.