Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On energy dissipation theory and numerical stability for time-fractional phase field equations (1808.01471v2)

Published 4 Aug 2018 in math.NA and cs.NA

Abstract: For the time-fractional phase field models, the corresponding energy dissipation law has not been settled on both the continuous level and the discrete level. In this work, we shall address this open issue. More precisely, we prove for the first time that the time-fractional phase field models indeed admit an energy dissipation law of an integral type. In the discrete level, we propose a class of finite difference schemes that can inherit the theoretical energy stability. Our discussion covers the time-fractional gradient systems, including the time-fractional Allen-Cahn equation, the time-fractional Cahn-Hilliard equation, and the time-fractional molecular beam epitaxy models. Numerical examples are presented to confirm the theoretical results. Moreover, a numerical study of the coarsening rate of random initial states depending on the fractional parameter $\alpha$ reveals that there are several coarsening stages for both time-fractional Cahn-Hilliard equation and time-fractional molecular beam epitaxy model, while there exists a $-\alpha/3$ power law coarsening stage.

Citations (114)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.