Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CredSaT: Credibility Ranking of Users in Big Social Data incorporating Semantic Analysis and Temporal Factor (1808.01413v1)

Published 4 Aug 2018 in cs.SI

Abstract: The widespread use of big social data has pointed the research community in several significant directions. In particular, the notion of social trust has attracted a great deal of attention from information processors | computer scientists and information consumers | formal organizations. This is evident in various applications such as recommendation systems, viral marketing and expertise retrieval. Hence, it is essential to have frameworks that can temporally measure users credibility in all domains categorised under big social data. This paper presents CredSaT (Credibility incorporating Semantic analysis and Temporal factor): a fine-grained users credibility analysis framework for big social data. A novel metric that includes both new and current features, as well as the temporal factor, is harnessed to establish the credibility ranking of users. Experiments on real-world dataset demonstrate the effectiveness and applicability of our model to indicate highly domain-based trustworthy users. Further, CredSaT shows the capacity in capturing spammers and other anomalous users.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.