Papers
Topics
Authors
Recent
2000 character limit reached

A Multi-task Ensemble Framework for Emotion, Sentiment and Intensity Prediction (1808.01216v2)

Published 3 Aug 2018 in cs.CL

Abstract: In this paper, through multi-task ensemble framework we address three problems of emotion and sentiment analysis i.e. "emotion classification & intensity", "valence, arousal & dominance for emotion" and "valence & arousal} for sentiment". The underlying problems cover two granularities (i.e. coarse-grained and fine-grained) and a diverse range of domains (i.e. tweets, Facebook posts, news headlines, blogs, letters etc.). The ensemble model aims to leverage the learned representations of three deep learning models (i.e. CNN, LSTM and GRU) and a hand-crafted feature representation for the predictions. Experimental results on the benchmark datasets show the efficacy of our proposed multi-task ensemble frameworks. We obtain the performance improvement of 2-3 points on an average over single-task systems for most of the problems and domains.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.