Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hallucinating Agnostic Images to Generalize Across Domains (1808.01102v2)

Published 3 Aug 2018 in cs.CV

Abstract: The ability to generalize across visual domains is crucial for the robustness of artificial recognition systems. Although many training sources may be available in real contexts, the access to even unlabeled target samples cannot be taken for granted, which makes standard unsupervised domain adaptation methods inapplicable in the wild. In this work we investigate how to exploit multiple sources by hallucinating a deep visual domain composed of images, possibly unrealistic, able to maintain categorical knowledge while discarding specific source styles. The produced agnostic images are the result of a deep architecture that applies pixel adaptation on the original source data guided by two adversarial domain classifier branches at image and feature level. Our approach is conceived to learn only from source data, but it seamlessly extends to the use of unlabeled target samples. Remarkable results for both multi-source domain adaptation and domain generalization support the power of hallucinating agnostic images in this framework.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube