Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Inferring Parameters Through Inverse Multiobjective Optimization (1808.00935v1)

Published 2 Aug 2018 in stat.ML and cs.LG

Abstract: Given a set of human's decisions that are observed, inverse optimization has been developed and utilized to infer the underlying decision making problem. The majority of existing studies assumes that the decision making problem is with a single objective function, and attributes data divergence to noises, errors or bounded rationality, which, however, could lead to a corrupted inference when decisions are tradeoffs among multiple criteria. In this paper, we take a data-driven approach and design a more sophisticated inverse optimization formulation to explicitly infer parameters of a multiobjective decision making problem from noisy observations. This framework, together with our mathematical analyses and advanced algorithm developments, demonstrates a strong capacity in estimating critical parameters, decoupling "interpretable" components from noises or errors, deriving the denoised \emph{optimal} decisions, and ensuring statistical significance. In particular, for the whole decision maker population, if suitable conditions hold, we will be able to understand the overall diversity and the distribution of their preferences over multiple criteria, which is important when a precise inference on every single decision maker is practically unnecessary or infeasible. Numerical results on a large number of experiments are reported to confirm the effectiveness of our unique inverse optimization model and the computational efficacy of the developed algorithms.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)