Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Estimation and Control Using Sampling-Based Bayesian Reinforcement Learning (1808.00888v1)

Published 1 Aug 2018 in cs.SY

Abstract: Real-world autonomous systems operate under uncertainty about both their pose and dynamics. Autonomous control systems must simultaneously perform estimation and control tasks to maintain robustness to changing dynamics or modeling errors. However, information gathering actions often conflict with optimal actions for reaching control objectives, requiring a trade-off between exploration and exploitation. The specific problem setting considered here is for discrete-time nonlinear systems, with process noise, input-constraints, and parameter uncertainty. This article frames this problem as a Bayes-adaptive Markov decision process and solves it online using Monte Carlo tree search with an unscented Kalman filter to account for process noise and parameter uncertainty. This method is compared with certainty equivalent model predictive control and a tree search method that approximates the QMDP solution, providing insight into when information gathering is useful. Discrete time simulations characterize performance over a range of process noise and bounds on unknown parameters. An offline optimization method is used to select the Monte Carlo tree search parameters without hand-tuning. In lieu of recursive feasibility guarantees, a probabilistic bounding heuristic is offered that increases the probability of keeping the state within a desired region.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.