Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

An Adaptive Partial Sensitivity Updating Scheme for Fast Nonlinear Model Predictive Control (1808.00877v1)

Published 2 Aug 2018 in cs.SY

Abstract: In recent years, efficient optimization algorithms for Nonlinear Model Predictive Control (NMPC) have been proposed, that significantly reduce the on-line computational time. In particular, direct multiple shooting and Sequential Quadratic Programming (SQP) are used to efficiently solve Nonlinear Programming (NLP) problems arising from continuous-time NMPC applications. One of the computationally demanding steps for on-line optimization is the computation of sensitivities of the nonlinear dynamics at every sampling instant, especially for systems of large dimensions, strong stiffness, and when using long prediction horizons. In this paper, within the algorithmic framework of the Real-Time Iteration (RTI) scheme based on multiple shooting, an inexact sensitivity updating scheme is proposed, that performs a partial update of the Jacobian of the constraints in the NLP. Such update is triggered by using a Curvature-like Measure of Nonlinearity (CMoN), so that only sensitivities exhibiting highly nonlinear behaviour are updated, thus adapting to system operating conditions and possibly reducing the computational burden. An advanced tuning strategy for the updating scheme is provided to automatically determine the number of sensitivities being updated, with a guaranteed bounded error on the Quadratic Programming (QP) solution. Numerical and control performance of the scheme is evaluated by means of two simulation examples performed on a dedicated implementation. Local convergence analysis is also presented and a tunable convergence rate is proven, when applied to the SQP method.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.