Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

High-dimensional regression in practice: an empirical study of finite-sample prediction, variable selection and ranking (1808.00723v2)

Published 2 Aug 2018 in stat.ME and stat.ML

Abstract: Penalized likelihood approaches are widely used for high-dimensional regression. Although many methods have been proposed and the associated theory is now well-developed, the relative efficacy of different approaches in finite-sample settings, as encountered in practice, remains incompletely understood. There is therefore a need for empirical investigations in this area that can offer practical insight and guidance to users. In this paper we present a large-scale comparison of penalized regression methods. We distinguish between three related goals: prediction, variable selection and variable ranking. Our results span more than 2,300 data-generating scenarios, including both synthetic and semi-synthetic data (real covariates and simulated responses), allowing us to systematically consider the influence of various factors (sample size, dimensionality, sparsity, signal strength and multicollinearity). We consider several widely-used approaches (Lasso, Adaptive Lasso, Elastic Net, Ridge Regression, SCAD, the Dantzig Selector and Stability Selection). We find considerable variation in performance between methods. Our results support a `no panacea' view, with no unambiguous winner across all scenarios or goals, even in this restricted setting where all data align well with the assumptions underlying the methods. The study allows us to make some recommendations as to which approaches may be most (or least) suitable given the goal and some data characteristics. Our empirical results complement existing theory and provide a resource to compare methods across a range of scenarios and metrics.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.