Papers
Topics
Authors
Recent
2000 character limit reached

Double Supervised Network with Attention Mechanism for Scene Text Recognition (1808.00677v3)

Published 2 Aug 2018 in cs.CV and cs.AI

Abstract: In this paper, we propose Double Supervised Network with Attention Mechanism (DSAN), a novel end-to-end trainable framework for scene text recognition. It incorporates one text attention module during feature extraction which enforces the model to focus on text regions and the whole framework is supervised by two branches. One supervision branch comes from context-level modelling and another comes from one extra supervision enhancement branch which aims at tackling inexplicit semantic information at character level. These two supervisions can benefit each other and yield better performance. The proposed approach can recognize text in arbitrary length and does not need any predefined lexicon. Our method outperforms the current state-of-the-art methods on three text recognition benchmarks: IIIT5K, ICDAR2013 and SVT reaching accuracy 88.6%, 92.3% and 84.1% respectively which suggests the effectiveness of the proposed method.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.