Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Investigating accuracy of pitch-accent annotations in neural network-based speech synthesis and denoising effects (1808.00665v1)

Published 2 Aug 2018 in eess.AS, cs.CL, cs.SD, and stat.ML

Abstract: We investigated the impact of noisy linguistic features on the performance of a Japanese speech synthesis system based on neural network that uses WaveNet vocoder. We compared an ideal system that uses manually corrected linguistic features including phoneme and prosodic information in training and test sets against a few other systems that use corrupted linguistic features. Both subjective and objective results demonstrate that corrupted linguistic features, especially those in the test set, affected the ideal system's performance significantly in a statistical sense due to a mismatched condition between the training and test sets. Interestingly, while an utterance-level Turing test showed that listeners had a difficult time differentiating synthetic speech from natural speech, it further indicated that adding noise to the linguistic features in the training set can partially reduce the effect of the mismatch, regularize the model, and help the system perform better when linguistic features of the test set are noisy.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.