Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Multi-channel Network with Image Retrieval for Accurate Brain Tissue Segmentation (1808.00457v2)

Published 1 Aug 2018 in cs.CV

Abstract: Magnetic Resonance Imaging (MRI) is widely used in the pathological and functional studies of the brain, such as epilepsy, tumor diagnosis, etc. Automated accurate brain tissue segmentation like cerebro-spinal fluid (CSF), gray matter (GM), white matter (WM) is the basis of these studies and many researchers are seeking it to the best. Based on the truth that multi-channel segmentation network with its own ground truth achieves up to average dice ratio 0.98, we propose a novel method that we add a fourth channel with the ground truth of the most similar image's obtained by CBIR from the database. The results show that the method improves the segmentation performance, as measured by average dice ratio, by approximately 0.01 in the MRBrainS18 database. In addition, our method is concise and robust, which can be used to any network architecture that needs not be modified a lot.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.