Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Saliency for Fine-grained Object Recognition in Domains with Scarce Training Data (1808.00262v3)

Published 1 Aug 2018 in cs.CV

Abstract: This paper investigates the role of saliency to improve the classification accuracy of a Convolutional Neural Network (CNN) for the case when scarce training data is available. Our approach consists in adding a saliency branch to an existing CNN architecture which is used to modulate the standard bottom-up visual features from the original image input, acting as an attentional mechanism that guides the feature extraction process. The main aim of the proposed approach is to enable the effective training of a fine-grained recognition model with limited training samples and to improve the performance on the task, thereby alleviating the need to annotate large dataset. % The vast majority of saliency methods are evaluated on their ability to generate saliency maps, and not on their functionality in a complete vision pipeline. Our proposed pipeline allows to evaluate saliency methods for the high-level task of object recognition. We perform extensive experiments on various fine-grained datasets (Flowers, Birds, Cars, and Dogs) under different conditions and show that saliency can considerably improve the network's performance, especially for the case of scarce training data. Furthermore, our experiments show that saliency methods that obtain improved saliency maps (as measured by traditional saliency benchmarks) also translate to saliency methods that yield improved performance gains when applied in an object recognition pipeline.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube