Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Modeling Task Effects in Human Reading with Neural Network-based Attention (1808.00054v5)

Published 31 Jul 2018 in cs.CL

Abstract: Research on human reading has long documented that reading behavior shows task-specific effects, but it has been challenging to build general models predicting what reading behavior humans will show in a given task. We introduce NEAT, a computational model of the allocation of attention in human reading, based on the hypothesis that human reading optimizes a tradeoff between economy of attention and success at a task. Our model is implemented using contemporary neural network modeling techniques, and makes explicit and testable predictions about how the allocation of attention varies across different tasks. We test this in an eyetracking study comparing two versions of a reading comprehension task, finding that our model successfully accounts for reading behavior across the tasks. Our work thus provides evidence that task effects can be modeled as optimal adaptation to task demands.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.