Entanglement cost and quantum channel simulation (1807.11939v3)
Abstract: This paper proposes a revised definition for the entanglement cost of a quantum channel $\mathcal{N}$. In particular, it is defined here to be the smallest rate at which entanglement is required, in addition to free classical communication, in order to simulate $n$ calls to $\mathcal{N}$, such that the most general discriminator cannot distinguish the $n$ calls to $\mathcal{N}$ from the simulation. The most general discriminator is one who tests the channels in a sequential manner, one after the other, and this discriminator is known as a quantum tester [Chiribella et al., Phys. Rev. Lett., 101, 060401 (2008)] or one who is implementing a quantum co-strategy [Gutoski et al., Symp. Th. Comp., 565 (2007)]. As such, the proposed revised definition of entanglement cost of a quantum channel leads to a rate that cannot be smaller than the previous notion of a channel's entanglement cost [Berta et al., IEEE Trans. Inf. Theory, 59, 6779 (2013)], in which the discriminator is limited to distinguishing parallel uses of the channel from the simulation. Under this revised notion, I prove that the entanglement cost of certain teleportation-simulable channels is equal to the entanglement cost of their underlying resource states. Then I find single-letter formulas for the entanglement cost of some fundamental channel models, including dephasing, erasure, three-dimensional Werner--Holevo channels, epolarizing channels (complements of depolarizing channels), as well as single-mode pure-loss and pure-amplifier bosonic Gaussian channels. These examples demonstrate that the resource theory of entanglement for quantum channels is not reversible. Finally, I discuss how to generalize the basic notions to arbitrary resource theories.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.