Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Disaster Monitoring using Unmanned Aerial Vehicles and Deep Learning (1807.11805v2)

Published 31 Jul 2018 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: Monitoring of disasters is crucial for mitigating their effects on the environment and human population, and can be facilitated by the use of unmanned aerial vehicles (UAV), equipped with camera sensors that produce aerial photos of the areas of interest. A modern technique for recognition of events based on aerial photos is deep learning. In this paper, we present the state of the art work related to the use of deep learning techniques for disaster identification. We demonstrate the potential of this technique in identifying disasters with high accuracy, by means of a relatively simple deep learning model. Based on a dataset of 544 images (containing disaster images such as fires, earthquakes, collapsed buildings, tsunami and flooding, as well as non-disaster scenes), our results show an accuracy of 91% achieved, indicating that deep learning, combined with UAV equipped with camera sensors, have the potential to predict disasters with high accuracy.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.