Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Deep Recurrent Neural Networks for ECG Signal Denoising (1807.11551v3)

Published 30 Jul 2018 in cs.NE and eess.SP

Abstract: Electrocardiographic signal is a subject to multiple noises, caused by various factors. It is therefore a standard practice to denoise such signal before further analysis. With advances of new branch of machine learning, called deep learning, new methods are available that promises state-of-the-art performance for this task. We present a novel approach to denoise electrocardiographic signals with deep recurrent denoising neural networks. We utilize a transfer learning technique by pretraining the network using synthetic data, generated by a dynamic ECG model, and fine-tuning it with a real data. We also investigate the impact of the synthetic training data on the network performance on real signals. The proposed method was tested on a real dataset with varying amount of noise. The results indicate that four-layer deep recurrent neural network can outperform reference methods for heavily noised signal. Moreover, networks pretrained with synthetic data seem to have better results than network trained with real data only. We show that it is possible to create state-of-the art denoising neural network that, pretrained on artificial data, can perform exceptionally well on real ECG signals after proper fine-tuning.

Citations (85)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.