Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Uncertainty Estimation for Semantic Segmentation in Videos (1807.11037v1)

Published 29 Jul 2018 in cs.CV

Abstract: Uncertainty estimation in deep learning becomes more important recently. A deep learning model can't be applied in real applications if we don't know whether the model is certain about the decision or not. Some literature proposes the Bayesian neural network which can estimate the uncertainty by Monte Carlo Dropout (MC dropout). However, MC dropout needs to forward the model $N$ times which results in $N$ times slower. For real-time applications such as a self-driving car system, which needs to obtain the prediction and the uncertainty as fast as possible, so that MC dropout becomes impractical. In this work, we propose the region-based temporal aggregation (RTA) method which leverages the temporal information in videos to simulate the sampling procedure. Our RTA method with Tiramisu backbone is 10x faster than the MC dropout with Tiramisu backbone ($N=5$). Furthermore, the uncertainty estimation obtained by our RTA method is comparable to MC dropout's uncertainty estimation on pixel-level and frame-level metrics.

Citations (100)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.