Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improving Neural Sequence Labelling using Additional Linguistic Information (1807.10805v1)

Published 27 Jul 2018 in cs.CL and cs.LG

Abstract: Sequence labelling is the task of assigning categorical labels to a data sequence. In Natural Language Processing, sequence labelling can be applied to various fundamental problems, such as Part of Speech (POS) tagging, Named Entity Recognition (NER), and Chunking. In this study, we propose a method to add various linguistic features to the neural sequence framework to improve sequence labelling. Besides word level knowledge, sense embeddings are added to provide semantic information. Additionally, selective readings of character embeddings are added to capture contextual as well as morphological features for each word in a sentence. Compared to previous methods, these added linguistic features allow us to design a more concise model and perform more efficient training. Our proposed architecture achieves state of the art results on the benchmark datasets of POS, NER, and chunking. Moreover, the convergence rate of our model is significantly better than the previous state of the art models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.