Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Connected Components at Scale via Local Contractions (1807.10727v1)

Published 27 Jul 2018 in cs.DC and cs.DS

Abstract: As a fundamental tool in hierarchical graph clustering, computing connected components has been a central problem in large-scale data mining. While many known algorithms have been developed for this problem, they are either not scalable in practice or lack strong theoretical guarantees on the parallel running time, that is, the number of communication rounds. So far, the best proven guarantee is $\Oh(\log n)$, which matches the running time in the PRAM model. In this paper, we aim to design a distributed algorithm for this problem that works well in theory and practice. In particular, we present a simple algorithm based on contractions and provide a scalable implementation of it in MapReduce. On the theoretical side, in addition to showing $\Oh(\log n)$ convergence for all graphs, we prove an $\Oh(\log \log n)$ parallel running time with high probability for a certain class of random graphs. We work in the MPC model that captures popular parallel computing frameworks, such as MapReduce, Hadoop or Spark. On the practical side, we show that our algorithm outperforms the state-of-the-art MapReduce algorithms. To confirm its scalability, we report empirical results on graphs with several trillions of edges.

Citations (18)

Summary

We haven't generated a summary for this paper yet.