Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Connected Components at Scale via Local Contractions (1807.10727v1)

Published 27 Jul 2018 in cs.DC and cs.DS

Abstract: As a fundamental tool in hierarchical graph clustering, computing connected components has been a central problem in large-scale data mining. While many known algorithms have been developed for this problem, they are either not scalable in practice or lack strong theoretical guarantees on the parallel running time, that is, the number of communication rounds. So far, the best proven guarantee is $\Oh(\log n)$, which matches the running time in the PRAM model. In this paper, we aim to design a distributed algorithm for this problem that works well in theory and practice. In particular, we present a simple algorithm based on contractions and provide a scalable implementation of it in MapReduce. On the theoretical side, in addition to showing $\Oh(\log n)$ convergence for all graphs, we prove an $\Oh(\log \log n)$ parallel running time with high probability for a certain class of random graphs. We work in the MPC model that captures popular parallel computing frameworks, such as MapReduce, Hadoop or Spark. On the practical side, we show that our algorithm outperforms the state-of-the-art MapReduce algorithms. To confirm its scalability, we report empirical results on graphs with several trillions of edges.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube