Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-view Reconstructive Preserving Embedding for Dimension Reduction (1807.10614v1)

Published 25 Jul 2018 in cs.CV

Abstract: With the development of feature extraction technique, one sample always can be represented by multiple features which locate in high-dimensional space. Multiple features can re ect various perspectives of one same sample, so there must be compatible and complementary information among the multiple views. Therefore, it's natural to integrate multiple features together to obtain better performance. However, most multi-view dimension reduction methods cannot handle multiple features from nonlinear space with high dimensions. To address this problem, we propose a novel multi-view dimension reduction method named Multi-view Reconstructive Preserving Embedding (MRPE) in this paper. MRPE reconstructs each sample by utilizing its k nearest neighbors. The similarities between each sample and its neighbors are primely mapped into lower-dimensional space in order to preserve the underlying neighborhood structure of the original manifold. MRPE fully exploits correlations between each sample and its neighbors from multiple views by linear reconstruction. Furthermore, MRPE constructs an optimization problem and derives an iterative procedure to obtain the low-dimensional embedding. Various evaluations based on the applications of document classification, face recognition and image retrieval demonstrate the effectiveness of our proposed approach on multi-view dimension reduction.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.