Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spatial Correlation and Value Prediction in Convolutional Neural Networks (1807.10598v2)

Published 21 Jul 2018 in cs.CV

Abstract: Convolutional neural networks (CNNs) are a widely used form of deep neural networks, introducing state-of-the-art results for different problems such as image classification, computer vision tasks, and speech recognition. However, CNNs are compute intensive, requiring billions of multiply-accumulate (MAC) operations per input. To reduce the number of MACs in CNNs, we propose a value prediction method that exploits the spatial correlation of zero-valued activations within the CNN output feature maps, thereby saving convolution operations. Our method reduces the number of MAC operations by 30.4%, averaged on three modern CNNs for ImageNet, with top-1 accuracy degradation of 1.7%, and top-5 accuracy degradation of 1.1%.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)