Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Metric Embedding Autoencoders for Unsupervised Cross-Dataset Transfer Learning (1807.10591v1)

Published 18 Jul 2018 in cs.CV and cs.LG

Abstract: Cross-dataset transfer learning is an important problem in person re-identification (Re-ID). Unfortunately, not too many deep transfer Re-ID models exist for realistic settings of practical Re-ID systems. We propose a purely deep transfer Re-ID model consisting of a deep convolutional neural network and an autoencoder. The latent code is divided into metric embedding and nuisance variables. We then utilize an unsupervised training method that does not rely on co-training with non-deep models. Our experiments show improvements over both the baseline and competitors' transfer learning models.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.