Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

AXNet: ApproXimate computing using an end-to-end trainable neural network (1807.10458v2)

Published 27 Jul 2018 in cs.LG and stat.ML

Abstract: Neural network based approximate computing is a universal architecture promising to gain tremendous energy-efficiency for many error resilient applications. To guarantee the approximation quality, existing works deploy two neural networks (NNs), e.g., an approximator and a predictor. The approximator provides the approximate results, while the predictor predicts whether the input data is safe to approximate with the given quality requirement. However, it is non-trivial and time-consuming to make these two neural network coordinate---they have different optimization objectives---by training them separately. This paper proposes a novel neural network structure---AXNet---to fuse two NNs to a holistic end-to-end trainable NN. Leveraging the philosophy of multi-task learning, AXNet can tremendously improve the invocation (proportion of safe-to-approximate samples) and reduce the approximation error. The training effort also decrease significantly. Experiment results show 50.7% more invocation and substantial cuts of training time when compared to existing neural network based approximate computing framework.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.