Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of semiglobal stability properties for discrete-time models of non-uniformly sampled nonlinear systems (1807.10315v1)

Published 26 Jul 2018 in cs.SY

Abstract: Discrete-time models of non-uniformly sampled nonlinear systems under zero-order hold relate the next state sample to the current state sample, (constant) input value, and sampling interval. The exact discrete-time model, that is, the discrete-time model whose state matches that of the continuous-time nonlinear system at the sampling instants may be difficult or even impossible to obtain. In this context, one approach to the analysis of stability is based on the use of an approximate discrete-time model and a bound on the mismatch between the exact and approximate models. This approach requires three conceptually different tasks: i) ensure the stability of the (approximate) discrete-time model, ii) ensure that the stability of the approximate model carries over to the exact model, iii) if necessary, bound intersample behaviour. Existing conditions for ensuring the stability of a discrete-time model as per task i) have some or all of the following drawbacks: are only sufficient but not necessary; do not allow for varying sampling rate; cannot be applied in the presence of state-measurement or actuation errors. In this paper, we overcome these drawbacks by providing characterizations of, i.e. necessary and sufficient conditions for, two stability properties: semiglobal asymptotic stability, robustly with respect to bounded disturbances, and semiglobal input-to-state stability, where the (disturbance) input may successfully represent state-measurement or actuation errors. Our results can be applied when sampling is not necessarily uniform.

Citations (4)

Summary

We haven't generated a summary for this paper yet.