Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Better Baseline for AVA (1807.10066v1)

Published 26 Jul 2018 in cs.CV

Abstract: We introduce a simple baseline for action localization on the AVA dataset. The model builds upon the Faster R-CNN bounding box detection framework, adapted to operate on pure spatiotemporal features - in our case produced exclusively by an I3D model pretrained on Kinetics. This model obtains 21.9% average AP on the validation set of AVA v2.1, up from 14.5% for the best RGB spatiotemporal model used in the original AVA paper (which was pretrained on Kinetics and ImageNet), and up from 11.3 of the publicly available baseline using a ResNet101 image feature extractor, that was pretrained on ImageNet. Our final model obtains 22.8%/21.9% mAP on the val/test sets and outperforms all submissions to the AVA challenge at CVPR 2018.

Citations (65)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.