Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Deep Contextual Multi-armed Bandits (1807.09809v1)

Published 25 Jul 2018 in cs.LG and stat.ML

Abstract: Contextual multi-armed bandit problems arise frequently in important industrial applications. Existing solutions model the context either linearly, which enables uncertainty driven (principled) exploration, or non-linearly, by using epsilon-greedy exploration policies. Here we present a deep learning framework for contextual multi-armed bandits that is both non-linear and enables principled exploration at the same time. We tackle the exploration vs. exploitation trade-off through Thompson sampling by exploiting the connection between inference time dropout and sampling from the posterior over the weights of a Bayesian neural network. In order to adjust the level of exploration automatically as more data is made available to the model, the dropout rate is learned rather than considered a hyperparameter. We demonstrate that our approach substantially reduces regret on two tasks (the UCI Mushroom task and the Casino Parity task) when compared to 1) non-contextual bandits, 2) epsilon-greedy deep contextual bandits, and 3) fixed dropout rate deep contextual bandits. Our approach is currently being applied to marketing optimization problems at HubSpot.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.