Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Agent Reinforcement Learning: A Report on Challenges and Approaches (1807.09427v1)

Published 25 Jul 2018 in cs.AI, cs.LG, and stat.ML

Abstract: Reinforcement Learning (RL) is a learning paradigm concerned with learning to control a system so as to maximize an objective over the long term. This approach to learning has received immense interest in recent times and success manifests itself in the form of human-level performance on games like \textit{Go}. While RL is emerging as a practical component in real-life systems, most successes have been in Single Agent domains. This report will instead specifically focus on challenges that are unique to Multi-Agent Systems interacting in mixed cooperative and competitive environments. The report concludes with advances in the paradigm of training Multi-Agent Systems called \textit{Decentralized Actor, Centralized Critic}, based on an extension of MDPs called \textit{Decentralized Partially Observable MDP}s, which has seen a renewed interest lately.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.