Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Randomized Complexity of Minimizing a Convex Quadratic Function (1807.09386v7)

Published 24 Jul 2018 in cs.LG, cs.DS, math.OC, and stat.ML

Abstract: Minimizing a convex, quadratic objective of the form $f_{\mathbf{A},\mathbf{b}}(x) := \frac{1}{2}x\top \mathbf{A} x - \langle \mathbf{b}, x \rangle$ for $\mathbf{A} \succ 0 $ is a fundamental problem in machine learning and optimization. In this work, we prove gradient-query complexity lower bounds for minimizing convex quadratic functions which apply to both deterministic and \emph{randomized} algorithms. Specifically, for $\kappa > 1$, we exhibit a distribution over $(\mathbf{A},\mathbf{b})$ with condition number $\mathrm{cond}(\mathbf{A}) \le \kappa$, such that any \emph{randomized} algorithm requires $\Omega(\sqrt{\kappa})$ gradient queries to find a solution $\hat x$ for which $|\hat x - \mathbf x_\star| \le \epsilon_0|\mathbf{x}{\star}|$, where $\mathbf x{\star} = \mathbf{A}{-1}\mathbf{b}$ is the optimal solution, and $\epsilon_0$ a small constant. Setting $\kappa =1/\epsilon$, this lower bound implies the minimax rate of $T = \Omega(\lambda_1(\mathbf{A})|\mathbf x_\star|2/\sqrt{\epsilon})$ queries required to minimize an arbitrary convex quadratic function up to error $f(\hat{x}) - f(\mathbf x_\star) \le \epsilon$. Our lower bound holds for a distribution derived from classical ensembles in random matrix theory, and relies on a careful reduction from adaptively estimating a planted vector $\mathbf u$ in a deformed Wigner model. A key step in deriving sharp lower bounds is demonstrating that the optimization error $\mathbf x_\star - \hat x$ cannot align too closely with $\mathbf{u}$. To this end, we prove an upper bound on the cosine between $\mathbf x_\star - \hat x$ and $\mathbf u$ in terms of the MMSE of estimating the plant $\mathbf u$ in a deformed Wigner model. We then bound the MMSE by carefully modifying a result due to Lelarge and Miolane 2016, which rigorously establishes a general replica-symmetric formula for planted matrix models.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.