Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep learning the high variability and randomness inside multimode fibres (1807.09351v1)

Published 18 Jul 2018 in physics.optics and cs.LG

Abstract: Multimode fibres (MMF) are remarkable high-capacity information channels owing to the large number of transmitting fibre modes, and have recently attracted significant renewed interest in applications such as optical communication, imaging, and optical trapping. At the same time, the optical transmitting modes inside MMFs are highly sensitive to external perturbations and environmental changes, resulting in MMF transmission channels being highly variable and random. This largely limits the practical application of MMFs and hinders the full exploitation of their information capacity. Despite great research efforts made to overcome the high variability and randomness inside MMFs, any geometric change to the MMF leads to completely different transmission matrices, which unavoidably fails at the information recovery. Here, we show the successful binary image transmission using deep learning through a single MMF, which is stationary or subject to dynamic shape variations. We found that a single convolutional neural network has excellent generalisation capability with various MMF transmission states. This deep neural network can be trained by multiple MMF transmission states to accurately predict unknown information at the other end of the MMF at any of these states, without knowing which state is present. Our results demonstrate that deep learning is a promising solution to address the variability and randomness challenge of MMF based information channels. This deep-learning approach is the starting point of developing future high-capacity MMF optical systems and devices, and is applicable to optical systems concerning other diffusing media.

Citations (71)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.