Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Competitive Inner-Imaging Squeeze and Excitation for Residual Network (1807.08920v4)

Published 24 Jul 2018 in cs.CV, cs.AI, and cs.LG

Abstract: Residual networks, which use a residual unit to supplement the identity mappings, enable very deep convolutional architecture to operate well, however, the residual architecture has been proved to be diverse and redundant, which may leads to low-efficient modeling. In this work, we propose a competitive squeeze-excitation (SE) mechanism for the residual network. Re-scaling the value for each channel in this structure will be determined by the residual and identity mappings jointly, and this design enables us to expand the meaning of channel relationship modeling in residual blocks. Modeling of the competition between residual and identity mappings cause the identity flow to control the complement of the residual feature maps for itself. Furthermore, we design a novel inner-imaging competitive SE block to shrink the consumption and re-image the global features of intermediate network structure, by using the inner-imaging mechanism, we can model the channel-wise relations with convolution in spatial. We carry out experiments on the CIFAR, SVHN, and ImageNet datasets, and the proposed method can challenge state-of-the-art results.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.