Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Competitive Inner-Imaging Squeeze and Excitation for Residual Network (1807.08920v4)

Published 24 Jul 2018 in cs.CV, cs.AI, and cs.LG

Abstract: Residual networks, which use a residual unit to supplement the identity mappings, enable very deep convolutional architecture to operate well, however, the residual architecture has been proved to be diverse and redundant, which may leads to low-efficient modeling. In this work, we propose a competitive squeeze-excitation (SE) mechanism for the residual network. Re-scaling the value for each channel in this structure will be determined by the residual and identity mappings jointly, and this design enables us to expand the meaning of channel relationship modeling in residual blocks. Modeling of the competition between residual and identity mappings cause the identity flow to control the complement of the residual feature maps for itself. Furthermore, we design a novel inner-imaging competitive SE block to shrink the consumption and re-image the global features of intermediate network structure, by using the inner-imaging mechanism, we can model the channel-wise relations with convolution in spatial. We carry out experiments on the CIFAR, SVHN, and ImageNet datasets, and the proposed method can challenge state-of-the-art results.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube