Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Lesion segmentation using U-Net network (1807.08844v1)

Published 23 Jul 2018 in cs.CV, cs.LG, and stat.ML

Abstract: This paper explains the method used in the segmentation challenge (Task 1) in the International Skin Imaging Collaboration's (ISIC) Skin Lesion Analysis Towards Melanoma Detection challenge held in 2018. We have trained a U-Net network to perform the segmentation. The key elements for the training were first to adjust the loss function to incorporate unbalanced proportion of background and second to perform post-processing operation to adjust the contour of the prediction.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.