Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Two Algorithms to Find Primes in Patterns (1807.08777v3)

Published 23 Jul 2018 in math.NT and cs.DS

Abstract: Let $k\ge 1$ be an integer, and let $P= (f_1(x), \ldots, f_k(x) )$ be $k$ admissible linear polynomials over the integers, or \textit{the pattern}. We present two algorithms that find all integers $x$ where $\max{ {f_i(x) } } \le n$ and all the $f_i(x)$ are prime. Our first algorithm takes at most $O_P(n/(\log\log n)k)$ arithmetic operations using $O(k\sqrt{n})$ space. Our second algorithm takes slightly more time, $O_P(n/(\log \log n){k-1})$ arithmetic operations, but uses only $n{1/c}$ space for a constant $c>2$. We prove correctness unconditionally, but the running time relies on two unproven but reasonable conjectures. We are unaware of any previous complexity results for this problem beyond the use of a prime sieve. We also implemented several parallel versions of our second algorithm to show it is viable in practice. In particular, we found some new Cunningham chains of length 15, and we found all quadruplet primes up to $10{17}$.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube