Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Improved Speedup Factor for Sporadic Tasks with Constrained Deadlines under Dynamic Priority Scheduling (1807.08579v1)

Published 20 Jul 2018 in cs.DS and cs.CC

Abstract: Schedulability is a fundamental problem in real-time scheduling, but it has to be approximated due to the intrinsic computational hardness. As the most popular algorithm for deciding schedulability on multiprocess platforms, the speedup factor of partitioned-EDF is challenging to analyze and is far from been determined. Partitioned-EDF was first proposed in 2005 by Barush and Fisher [1], and was shown to have a speedup factor at most 3-1/m, meaning that if the input of sporadic tasks is feasible on m processors with speed one, partitioned-EDF will always return succeeded on m processors with speed 3-1/m. In 2011, this upper bound was improved to 2.6322-1/m by Chen and Chakraborty [2], and no more improvements have appeared ever since then. In this paper, we develop a novel method to discretize and regularize sporadic tasks, which enables us to improve, in the case of constrained deadlines, the speedup factor of partitioned-EDF to 2.5556-1/m, very close to the asymptotic lower bound 2.5 in [2].

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube