Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

RGBiD-SLAM for Accurate Real-time Localisation and 3D Mapping (1807.08271v1)

Published 22 Jul 2018 in cs.CV

Abstract: In this paper we present a complete SLAM system for RGB-D cameras, namely RGB-iD SLAM. The presented approach is a dense direct SLAM method with the main characteristic of working with the depth maps in inverse depth parametrisation for the routines of dense alignment or keyframe fusion. The system consists in 2 CPU threads working in parallel, which share the use of the GPU for dense alignment and keyframe fusion routines. The first thread is a front-end operating at frame rate, which processes every incoming frame from the RGB-D sensor to compute the incremental odometry and integrate it in a keyframe which is changed periodically following a covisibility-based strategy. The second thread is a back-end which receives keyframes from the front-end. This thread is in charge of segmenting the keyframes based on their structure, describing them using Bags of Words, trying to find potential loop closures with previous keyframes, and in such case perform pose-graph optimisation for trajectory correction. In addition, our system allows is able to compute the odometry both with unregistered and registered depth maps, allowing to use customised calibrations of the RGB-D sensor. As a consequence in the paper we also propose a detailed calibration pipeline to compute customised calibrations for particular RGB-D cameras. The experiments with our approach in the TUM RGB-D benchmark datasets show results superior in accuracy to the state-of-the-art in many of the sequences. The code has been made available on-line for research purposes https://github.com/dangut/RGBiD-SLAM.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com