Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Subset Sum Made Simple (1807.08248v1)

Published 22 Jul 2018 in cs.DS

Abstract: Subset Sum is a classical optimization problem taught to undergraduates as an example of an NP-hard problem, which is amenable to dynamic programming, yielding polynomial running time if the input numbers are relatively small. Formally, given a set $S$ of $n$ positive integers and a target integer $t$, the Subset Sum problem is to decide if there is a subset of $S$ that sums up to $t$. Dynamic programming yields an algorithm with running time $O(nt)$. Recently, the authors [SODA '17] improved the running time to $\tilde{O}\bigl(\sqrt{n}t\bigr)$, and it was further improved to $\tilde{O}\bigl(n+t\bigr)$ by a somewhat involved randomized algorithm by Bringmann [SODA '17], where $\tilde{O}$ hides polylogarithmic factors. Here, we present a new and significantly simpler algorithm with running time $\tilde{O}\bigl(\sqrt{n}t\bigr)$. While not the fastest, we believe the new algorithm and analysis are simple enough to be presented in an algorithms class, as a striking example of a divide-and-conquer algorithm that uses FFT to a problem that seems (at first) unrelated. In particular, the algorithm and its analysis can be described in full detail in two pages (see pages 3-5).

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.